

SECTION - I : PHYSICS

PART - A: (Multi Correct Answer Type)

This section contains 07 multiple choice questions. Each question has four choices $(A),(B),(C)$ and (D) out of which ONE OR MORE may be correct.

1. In the circuit shown, a potential difference of 100 V is applied across $A B$. Then
(A) the potential difference between points C and D is 50 V
(B) the potential difference between A and C is 25 V

(C) the potential difference between B and D is 25 V
(D) all the capacitors have equal charge
2. A uniform disc is rolling on a horizontal surface. At a certain instant B is the point of contact and A is at height $2 R$ from ground, where R is radius of disc.

(A) The magnitude of the angular momentum of the disc about B is thrice that about A.
(B) The angular momentum of the disc about A is anticlockwise.
(C) The angular momentum of the disc about B is clockwise
(D) The angular momentum of the disc about A is equal to that about B.
3. Three very large plates are given charges as shown in the figure. If the cross-sectional area of each plate is the same, then the final charge distribution on the surface of the plates a, b, c, d, e, f is
(A) 7Q on surface e and 3Q on surface f
(B) -2Q on surface b and $3 Q$ on surface a

(C) -7Q on surface d and 2Q on surface c
(D) the magnitude of charges at surfaces b, c, d, e is equal .
4. A uniform rod of mass M is released from horizontal position as shown in the figure. The rod is free to rotate about a horizontal frictionless axis passing through hinge P
(A) The angular acceleration just after the release is $3 \mathrm{~g} / 2 \mathrm{~L}$.

(B) The angular acceleration just after the release is $3 \mathrm{~g} / 4 \mathrm{~L}$.
(C) The reaction force on the hinge just after the release is $\mathrm{Mg} / 4$.
(D) The reaction force on the hinge just after the release is $\mathrm{Mg} / 2$.
5. If a person sitting on a rotating stool with his hands outstretched, suddenly lowers his hand. Then his :
(A) Kinetic energy will decrease
(B) Moment of inertial will decrease
(C) Angular momentum will increase
(D) Angular velocity will increase.
6. $\quad \mathrm{X}$ and Y are large parallel conducting plates close to each other. Each face has an area A. X is given a charge Q, Y is without any charge. Point A, B and C are shown.
(A) Electric field at B is $\frac{Q}{2 \varepsilon_{0} A}$
(B) Electric field at B is $\frac{Q}{\varepsilon_{0} A}$
(C) The fields at A, B and C are of same magnitude
(D) The fields at A and C are in opposite direction.
7. Two free point charges $+4 Q$ and $+Q$ are placed at a distance r. A third charge q is so placed that all the three are in equilibrium.
(A) q is placed at a distance $\frac{1}{3} r$ from $4 Q$
(B) q is placed at a distance $\frac{1}{3} r$ from Q
(C) $\mathrm{q}=\frac{4 \mathrm{Q}}{9}$
(D) $q=-\frac{4 Q}{9}$

PART - A: (Single Correct Answer Type)

This section contains 06 multiple choice questions. Each question has four choices $(A),(B),(C)$ and (D) out of which ONLY ONE is correct.
8. In an experiment with a beam balance an unknown mass m is balanced by two known masses of 16 kg and 4 kg as shown in figure.

The value of the unknown mass m is
(A) 10 kg
(B) 6 kg
(C) 8 kg
(D) 12 kg
9. A small particle of mass m is projected at an angle θ with the x axis with an initial velocity v_{0} in the $x-y$ plane as shown in the figure. At a time $t<\frac{v_{0} \sin \theta}{g}$, the angular momentum of the particle about point of projection is
(A) $-m g v_{0} t^{2} \cos \theta \hat{j}$
(B) $m g v_{0} t \cos \theta \hat{k}$

(C) $-\frac{1}{2} m g v_{0} t^{2} \cos \theta \hat{k}$
(D) $\frac{1}{2} m g v_{0} t^{2} \cos \theta \hat{i}$
where \hat{i}, \hat{j} and \hat{k} are unit vectors along x, y and z-axis respectively.
10. Find flux through the given surface.
(A) $\frac{q}{2 \varepsilon_{0}}$
(B) $\frac{q}{4 \varepsilon_{0}}$
(C) $\frac{3 q}{4 \varepsilon_{0}}$
(D) $\frac{q}{\varepsilon_{0}}$

11. Three concentric charged metallic spherical shells A, B and C have radii a, b and c ; charge densities $\sigma,-\sigma$ and σ; and potentials $\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}$ and V_{C} respectively. Then which of the following relations is correct?
(A) $\mathrm{V}_{\mathrm{A}}=\frac{(\mathrm{a}+\mathrm{b}+\mathrm{c}) \sigma}{\varepsilon_{0}}$
(B) $V_{B}=\frac{\left[\left(\mathrm{a}^{2} / \mathrm{b}\right)-\mathrm{b}+\mathrm{c}\right] \sigma}{\varepsilon_{0}}$
(C) $\mathrm{V}_{\mathrm{c}}=\frac{\left[\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) / \mathrm{c}+\mathrm{c}\right] \sigma}{\varepsilon_{0}}$
(D) $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{C}}=\frac{(\mathrm{a}-\mathrm{b}+\mathrm{c}) \sigma}{\varepsilon_{0}}$
12. In the meter bridge circuit shown, the null point is obtained at C $(A C=x)$ on the wire $A B$. If the diameter of the wire $A B$ is doubled, the position of the new null point C^{\prime} will correspond to
(A) $A C^{\prime}=x / 2$
(B) $A C^{\prime}=x / 4$
(C) $A C^{\prime}=4 x$
(D) $A C^{\prime}=x$

13. A capacitor is charged and then made to discharge through a resistance. The time constant is τ. In what time will the potential difference across the capacitor decrease by 10% ?
(A) $\tau \ln (0.1)$
(B) $\tau \ln (0.9)$
(C) $\tau \ln (10 / 9)$
(D) $\tau \ln (11 / 10)$

Space for rough work

PART - C: (Integer Answer Type)

This section contains 05 questions. The answer to each question is a single-digit integer, ranging from 0 to 9. The correct digit below the question number in the OMR is to be bubbled.

1. An electric dipole has a fixed dipole moment \vec{p}, which makes angle θ with respect to x-axis. When subjected to an electric field $\overrightarrow{\mathrm{E}}_{1}=\mathrm{E} \hat{\mathrm{i}}$, it experiences a torque $\overrightarrow{\mathrm{T}}_{1}=\tau \hat{\mathrm{k}}$. When subjected to another electric field $\vec{E}_{2}=\sqrt{3} \mathrm{E}_{1} \hat{j}$ it experiences a torque $\vec{T}_{2}=-\vec{T}_{1}$. The angle θ is 15 n degree. Find the value of n.
2. A uniform rod of mass M and length ℓ with an insect of mass $M / 3$ initially placed at right end B is rotated with an angular velocity $\omega_{0}=5 \mathrm{rad} / \mathrm{sec}$ about an axis perpendicular to the rod and passing through end A. The
 insect starts crawling along the rod towards end A. Find the angular velocity of the rod, when the insect reaches the mid point of the rod.
3. Assume that an electric field $\vec{E}=30 x^{2} \hat{i}$ exists in space. Then the potential difference $V_{A}-V_{0}$, where V_{O} is the potential at the origin and V_{A} the potential at $x=2 m$ is $-20 k$. Find the value of k.
4. Two identical capacitors 1 and 2 are connected in series to a battery as shown in figure. Capacitor 2 contains a dielectric slab of dielectric constant k as shown E_{1} and E_{2} are the energies stored in the capacitors. Now the dielectric slab is removed and another dielectric which can completely fill capacitor 1 (having dielectric constant 2 K) is placed inside it and the corresponding
 energies are E_{1}^{\prime} and $E_{2}^{\prime}[k=2]$. The ratio $\frac{E_{1}}{E_{1}^{\prime}}=\frac{4 n^{2}}{9}$. The value of n is :
5. In the circuit shown, when the switch is closed, the capacitor charges with a time constant $n R C$. Find the value of n.

Space for rough work

SECTION - II: CHEMISTRY

PART - A: (Multi Correct Answer Type)

This section contains 07 multiple choice questions. Each question has four choices $(A),(B),(C)$ and (D) out of which ONE OR MORE may be correct.

1. Which of the following compounds show keto-enol formation?
(A) $\mathrm{CH}_{3} \mathrm{CN}$
(B) $\mathrm{CH}_{3} \mathrm{CHO}$
(C) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$
(D) $\mathrm{CH}_{3} \mathrm{NO}_{2}$
2. Which of the following on treatment with NaNH_{2} in liquid NH_{3} will give m-anisidine?
(A) o-Bromoanisole
(B) m -Bromoanisole
(C) p-Bromoanisole
(D) All of the above
3. Which statements are correct for reaction to occur?
$\mathrm{R}-\mathrm{C}-\mathrm{L}+\mathrm{Nu}^{-} \rightarrow \mathrm{R}-\mathrm{C}-\mathrm{Nu}+\mathrm{L}^{-}$
(A) Basicity of Nu^{-}should be more than L^{-}
(B) Basicity of Nu^{-}should be less than L^{-}
(C) α carbon should be electrophilic
(D) α carbon should be nucleophilic
4. Select the correct statement about diborane $\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)$.
(A) $\mathrm{B}_{2} \mathrm{H}_{6}$ has $3 \mathrm{C}, 2 \mathrm{e}^{-}$bond
(B) Each B is in sp^{3} hybridised state
(C) All 6 H atoms are equivalent in $\mathrm{B}_{2} \mathrm{H}_{6}$
(D) All 6 H are in the same plane
5. Aryl halides are less reactive towards nucleophilic substitution reactions as compared to alkyl halides due to
(A) sp^{2}-Hybridized carbon attached to halogen
(B) resonance stabilization
(C) longer carbon - halogen bond
(D) All of these
6. Which of the following reactions would generate an electrophile?
(A) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Cl}+$ anhydrous AlCl_{3}
(B) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}+\mathrm{CuBr}_{2}$
(C) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{H}_{3} \mathrm{O}^{+}$
(D) conc. $\mathrm{HNO}_{3}+$ conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
7. The correct statement among the following is
(A) Alkene is more reactive than alkyne for electrophilic addition reaction
(B) Alkynes gives nucleophilic as well as electrophilic addition reaction
(C) Alkynes is more reactive then alkene for nucleophilic addition reaction
(D) For electrophilic addition reaction the intermediate is carbanion

PART - A: (Single Correct Answer Type)

This section contains 06 multiple choice questions. Each question has four choices $(A),(B),(C)$ and (D) out of which ONLY ONE is correct.
8. Egyptian blue, $\mathrm{CaCu} \cdot \mathrm{Si}_{4} \mathrm{O}_{10}$, is an example of :
(A) sheet silicate
(B) pyrosilicate
(C) cyclic silicate
(D) chain silicate
9.

(A)

(B)

(C)

(D) None of these
10. Attacking species in the nitration of benzene is
(A) NO_{2}^{+}
(B) NO_{2}^{-}
(C) NO_{3}^{-}
(D) HNO_{3}
11. The maximum number of stereoisomers possible for 3-hydroxy-2-methyl butanoic acid is
(A) 1
(B) 2
(C) 3
(D) 4
12. Which of the following methods is/are not suitable for preparation of alcohol?
(A) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{NaBH}_{4} \longrightarrow$
(B) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{Na} / \mathrm{EtOH} \longrightarrow$
(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}+\mathrm{LiAlH}_{4} \longrightarrow$
(D) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \xrightarrow{\mathrm{Ni}}$
13. The compound that reacts with ammonical AgNO_{3}
(A) 1-Butyne
(B) 2-Butyne
(C) benzene
(D) Ethene

PART - C: (Integer Answer Type)

This section contains 05 questions. The answer to each question is a single-digit integer, ranging from 0 to 9. The correct digit below the question number in the OMR is to be bubbled

1. What is maximum number of O atoms bounded with each Si in SiO_{2} ?
2. How many stereoisomers are possible for the following compound?

3. The total number of monobromo substituted derivatives of O-xylene in presence of Lewis acid or light are?
4. n-butane on monobromination gives three isomers. The number of product(s) obtained when the major product is heated with KOH in $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ is/are.
5. How many isomeric dienes with a six membered ring are possible of the compound with the molecular formula $\mathrm{C}_{7} \mathrm{H}_{10}$, while two consecutive double bonds are not possible in six membered ring.

Space for rough work

SECTION - II : MATHEMATICS

PART - A: (Multi Correct Answer Type)

This section contains 07 multiple choice questions. Each question has four choices $(A),(B),(C)$ and (D) out of which ONE OR MORE may be correct.

1. If $y=f(x)=x^{4}-2 x^{3}+x^{2}+3$, and α, β are two minima of $f(x)$ and A represents the area bounded by $y=f(x)$, the x-axis and the ordinates corresponding to the minimum of function $f(x)$ is
(A) $\alpha=0, \beta=1$
(B) $\alpha=1, \beta=1 / 2$
(C) $A=3 \frac{1}{30}$
(D) $\mathrm{A}=3 \frac{2}{30}$
2. The differential equation for the family of curves $y=c \sin x$ can be given by
(A) $\left(\frac{d y}{d x}\right)^{2}=y^{2} \cot ^{2} x$
(B) $\left(\frac{d y}{d x}\right)^{2}-\left(\sec x \frac{d y}{d x}\right)^{2}+y^{2}=0$
(C) $\left(\frac{d y}{d x}\right)^{2}=\tan ^{2} x$
(D) $\frac{d y}{d x}=y \cot x$
3. If $a^{2}+b^{2}-c^{2}-2 a b=0$, then the family of straight lines $a x+b y+c=0$ is concurrent at the points
(A) $(-1,1)$
(B) $(1,-1)$
(C) $(1,1)$
(D) $(-1,-1)$
4. If tangent of any member of family of hyperbola $x y=4 \sin ^{2} \theta, \theta \in(0,2 \pi)-\{\pi\}$ is not a normal to member of family of circles $x^{2}+y^{2}-2 x-2 y+\mu=0$, where μ is any real parameter then θ belongs to
(A) $\left(\frac{5 \pi}{6}, \frac{7 \pi}{6}\right)$
(B) $\left(0, \frac{\pi}{6}\right)$
(C) $\left(\frac{11 \pi}{6}, 2 \pi\right)$
(D) $\left(\frac{\pi}{6}, \frac{5 \pi}{6}\right)$
5. Suppose that a normal drawn at a point $P\left(a t^{2}\right.$, 2at) to parabola $y^{2}=4 a x$ meets it again at Q. If the length of $P Q$ is minimum, then
(A) $t=\sqrt{2}$
(B) $t=-\sqrt{2}$
(C) $P Q=6 \sqrt{3} a$
(D) Q is $(2 a,-2 \sqrt{2} a)$
6. Let α and $f(\alpha)$ be the eccentricity of the ellipse $\frac{x^{2}}{3 b^{2}-2 a^{2}}+\frac{y^{2}}{2 b^{2}-a^{2}}=1,\left(3 b^{2}>2 a^{2}\right)$ and $\frac{x^{2}}{2 b^{2}-a^{2}}+\frac{y^{2}}{b^{2}}=1\left(2 b^{2}>a^{2}\right)$ respectively, then
(A) $f(\alpha)=\frac{\alpha}{\sqrt{1-\alpha^{2}}}, b \in R-\{0\}$
(B) $f(\alpha)=\frac{\alpha}{2 \sqrt{1-\alpha^{2}}}, b \in R-\{0\}$
(C) $\int e^{\alpha}\left(f(\alpha)-f^{\prime \prime}(\alpha)\right) d \alpha=e^{\alpha}\left[\frac{1}{(1-\alpha)^{3 / 2}}+\frac{\alpha}{\sqrt{1-\alpha^{2}}}\right]+c$
(D) none of these
7. The director circle of a hyperbola is $x^{2}+y^{2}-4 y=0$. One end of the major axis is $(2,0)$ then a focus is
(A) $(\sqrt{3}, 2-\sqrt{3})$
(B) $(-\sqrt{3}, 2+\sqrt{3})$
(C) $(\sqrt{6}, 2-\sqrt{6})$
(D) $(-\sqrt{6}, 2+\sqrt{6})$

PART - A: (Single Correct Answer Type)

This section contains 06 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.
8. A curve passing through the point $(1,1)$ is such that the intercept made by a tangent to it on x-axis is three times the x-coordinate of the point of tangency, then the equation of the curve is
(A) $y=\frac{1}{x^{2}}$
(B) $y=\sqrt{x}$
(C) $y=\frac{1}{\sqrt{x}}$
(D) none of these
9. The angle between the lines represented by the equation $6 x^{2}-7 x y-3 y^{2}=0$ is
(A) $\tan ^{-1}\left(\frac{11}{3}\right)$
(B) $\tan ^{-1}\left(\frac{4}{3}\right)$
(C) $\tan ^{-1}\left(\frac{21}{5}\right)$
(D) none of these
10. The point C divides $A B$ internally in the ratio $3: 1$ and two circles are drawn on $A C$ and $C B$ as diameters. The common tangent meet $A B$ at D. If r_{1} and $r_{2}\left(r_{1}>r_{2}\right)$ are radii of circles, then $B D$ is equal to
(A) r_{2}
(B) r_{1}
(C) $r_{1}+r_{2}$
(D) $r_{1}-r_{2}$
11. The equation of parabola is given by $y^{2}+8 x-12 y+20=0$. Tick the correct option given below
(A) vertex $(2,4)$
(B) focus (0,6)
(C) latus rectum 4
(D) axis $y=8$
12. The focal chord of $y^{2}=16 x$ is tangent to $(x-6)^{2}+y^{2}=2$, then the possible values of the slope of this chord, are
(A) $1,-1$
(B) $-1 / 2,2$
(C) $-2,1 / 2$
(D) $1 / 2,2$
13. $2 x+\sqrt{6} y=2$ touches the hyperbola $x^{2}-2 y^{2}=4$, then the point of contact is
(A) $\left(\frac{1}{2}, \frac{1}{\sqrt{6}}\right)$
(B) $(4,-\sqrt{6})$
(C) $(4, \sqrt{6})$
(D) $(-2, \sqrt{6})$

Space for rough work

PART - C: (Integer Answer Type)

This section contains 05 questions. The answer to each question is a single-digit integer, ranging from 0 to 9. The correct digit below the question number in the OMR is to be bubbled.

1. Number of common tangents to the circles $x^{2}+y^{2}-4 x+2 y-4=0$ and $x^{2}+y^{2}+2 x-6 y+6=0$
2. The shortest distance from the line $3 x+4 y=25$ to the circle $x^{2}+y^{2}+6 x+8 y=0$ is k, then k is
3. Distinct normals are drawn from a point to a parabola $y^{2}=4 a x$. The coordinates of the foot of two normals are $\left(a t_{1}^{2}, 2 a t_{1}\right), t_{1}=-1$ and $\left(a t_{2}^{2}, 2 a t_{2}\right), t_{2}=3$ on the parabola. The coordinate of the foot of the third normal is $\left(a k^{2}, 2 a k\right)$, then $-k$ is
4. If the equation of the curve on reflection of the ellipse $\frac{(x-4)^{2}}{16}+\frac{(y-3)^{2}}{9}=1$ about the line $x-y-2=0$ is $16 x^{2}+9 y^{2}+k_{1} x-36 y+k_{2}=0$, then $\left(k_{1}+k_{2}\right) / 66$ is equal to
5. If the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide, then the value of b^{2} is equal to

Space for rough work

FIITJ EE INTERNAL TEST PHYSICS, CHEMISTRY \& MATHEMATICS

CPT-1 PHASE-II CODE: 100 ANSWERS

PHYSICS (SECTION-I)

1. A, B, C
2. B, D
3. \mathbf{C}
4. C
5. 5
6.

A, B, C
3.

A, B, C
4. A, C
6. A, C, D
7.
11. B
8. C
10. C

1. 4
2. 8

12, D
3. 4

CHEMISTRY (SECTION-II)

1.	\mathbf{B}, \mathbf{C}	2.	\mathbf{A}, \mathbf{B}
5.	\mathbf{A}, \mathbf{B}	6.	$\mathbf{A}, \mathbf{C}, \mathbf{D}$
9.	\mathbf{A}	10.	\mathbf{A}
13.	\mathbf{A}	1.	$\mathbf{4}$
4.	$\mathbf{3}$	5.	$\mathbf{7}$

3. A, C
4. A, B, C
5. D
6. 8
7. A, B
8. A
9. A
10. 3

MATHEMATICS (SECTION-III)

1.	\mathbf{A}, \mathbf{C}	2.	$\mathbf{A}, \mathbf{B}, \mathbf{D}$	3.	\mathbf{A}, \mathbf{B}	4.	$\mathbf{A}, \mathbf{B}, \mathbf{C}$
5.	$\mathbf{A}, \mathbf{B}, \mathbf{C}$	6.	\mathbf{A}	7.	\mathbf{C}, \mathbf{D}	8.	\mathbf{C}
9.	\mathbf{A}	10.	\mathbf{A}	11.	\mathbf{B}	12.	\mathbf{A}
13.	\mathbf{B}	1.	$\mathbf{3}$	2.	$\mathbf{5}$	3.	$\mathbf{2}$
4.	$\mathbf{2}$	5.	$\mathbf{7}$				

