

SECTION - I : PHYSICS

PART - A: (Multi Correct Answer Type)
This section contains 07 multiple choice questions. Each question has four choices $(A),(B),(C)$ and (D) out of which ONE OR MORE may be correct.

1. Two concentric metallic shells of radius R and $2 R$, out of which the inner shell is having charge Q and outer shell is uncharged. If they are connected with a conducting wire. Then,
(A) Q amount of charge will flow from inner to outer shell.
(B) Q / e number of electrons will flow from outer to inner shell, where e charge on electron.
(C) $\frac{K Q^{2}}{4 R}$ amount of heat is produced in the wire
(D) $\frac{K Q^{2}}{2 R}$ amount of heat is produced in the wire.
2. In the given field pattern
(A) $E_{1}>E_{2}$
(B) $E_{1}<E_{2}$
(C) $V_{1}>V_{2}$
(D) $V_{1}<V_{2}$

3. Two identical circular discs A and B each of mass m and radius R are placed horizontally on a smooth horizontal surface with their centres fixed to the surface and touching each other as shown. Now, an impulse P_{0} is applied to the disc A as shown. If there is no slipping between the discs, then

(A) angular velocity of disc A will be $P_{0} / 2 m R$
(B) angular velocity of disc A will be $P_{0} / m R$
(C) angular velocity of disc B will be $P_{0} / m R$
(D) angular velocity of disc B will be $P_{0} / 4 \mathrm{Mr}$

Space for rough work

4. An infinitely long thin non-conducting wire is parallel to the z-axis and carries a uniform line charge density λ. It pierces a thin non-conducting spherical shell of radius R in such a way that the arc $P Q$ subtends an angle 120° at the centre O of the spherical shell, as shown in the figure. The permittivity of free space is ε_{0}. Which of the following statements is (are) true?
(A) The electric flux through the shell is $\sqrt{3} R \lambda / \varepsilon_{0}$
(B) The z-component of the electric field is zero at all the points on the surface of the shell
(C) The electric flux through the shell is $\sqrt{2} R \lambda / \varepsilon_{0}$
(D) The electric field is normal to the surface of the shell at all points

5. When some potential difference is maintained between A and B, currents I enters the network at A and leaves at B.
(A) The equivalent resistance between A and B is 8Ω.
(B) C and D are at the same potential.
(C) No current flows between C and D.
(D) Current $31 / 5$ flows from D to C.
6. Two square plate lie in the $x-y$ plane, as shown in figure. Mass of is
plate is m and side is I. then
(A) Moment inertia about x axes is $\frac{2}{3} m \ell^{2}$
(B) Moment inertia about y axes is $\frac{2}{3} \mathrm{~m} \ell^{2}$
(C) Moment inertia about z axes is $\frac{8}{3} \mathrm{~m} \ell^{2}$

(D) Moment inertia about x axes is $\frac{1}{3} m \ell^{2}$

7. Two massless and inextensible strings are wound over a pulley at radius R and $2 R$ whose free ends are attached with the blocks of masses m_{1} and m_{2}, respectively, as shown. When the system is released from rest, the pulley starts rotating clockwise without slipping with strings. Then
(A) the relation between the accelerations of the blocks, $a_{2}=2 a_{1}$
(B) the relation between tensions, $\mathrm{T}_{1}<2 \mathrm{~T}_{2}$
(C) the relation between tensions, $\mathrm{T}_{1}>2 \mathrm{~T}_{2}$
(D) the relation between the masses, $2 \mathrm{~m}_{2}>\mathrm{m}_{1}$

Space for rough work

PART - A: (Single Correct Answer Type)
This section contains 07 multiple choice questions. Each question has four choices $(A),(B),(C)$ and (D) out of which ONLY ONE is correct.
8. Consider a uniform spherical charge distribution of radius R_{1} centred at the origin O . In this distribution, a spherical cavity of radius R_{2}, centred at P with distance $O P=a=R_{1}-R_{2}$ (see figure) is made. If the electric field inside the cavity at position \vec{r} is $\vec{E}(\vec{r})$, then the correct statement(s) is(are)

(A) \vec{E} is uniform, its magnitude is independent of R_{2} but its direction depends on \vec{r}
(B) \vec{E} is uniform, its magnitude depends on R_{2} and its direction depends on \vec{r}
(C) $\overrightarrow{\mathrm{E}}$ is uniform, its magnitude is independent of a but its direction depends on $\overrightarrow{\mathrm{a}}$
(D) \vec{E} is uniform and both its magnitude and direction depend on \vec{a}
9. A disc of radius r is rotating about its centre with an angular speed ω_{0}. It is gently placed on a rough horizontal surface. After what time it will be in pure rolling?
(A) $\frac{\omega_{0} r}{2 \mu g}$
(B) $\frac{\omega_{0} r}{3 \mu g}$
(C) $\frac{\omega_{0} r}{\mu g}$
(D) $\frac{3}{2} \frac{\omega_{0} r}{\mu g}$

0. A constant 60 V d.c. supply is connected across two resistors of resistance $400 \mathrm{k} \Omega$ and $200 \mathrm{k} \Omega$. What is the reading of the voltmeter also of resistance $200 \mathrm{k} \Omega$, when connected across the second resistor as shown in Fig.
(A) 12 v
(B) 15 V
(C) 20 V
(D) 30 V

11. A 5 m long pole of 3 kg mass is placed against a smooth
vertical well as shown in the figure. Under equilibrium condition, if the pole makes an angle of 37° with the condition, if the pole makes an angle of 37° with the
horizontal, the frictional force between the pole and horizontal surface is
(A) 20 N
(B) 30 N
(C) $20 \mu \mathrm{~N}$
(D) $30 \mu \mathrm{~N}$

Space for rough work

12. Two identical conducting spheres, having charges of opposite sign, attract each other with a force of 0.108 N when separated by 0.5 m . The spheres are connected by a conducting wire, which is then removed, and thereafter, they repel each other with a force of 0.036 N . The initial charges on the spheres are
(A) $\pm\left(5 \times 10^{-6} \mathrm{C}\right.$ and $\left.15 \times 10^{-6} \mathrm{C}\right)$
(B) $\pm\left(1.0 \times 10^{-6} \mathrm{C}\right.$ and $\left.3.0 \times 10^{-6} \mathrm{C}\right)$
(C) $\pm\left(2.0 \times 10^{-6} \mathrm{C}\right.$ and $\left.6.0 \times 10^{-6} \mathrm{C}\right)$
(D) $\pm\left(0.5 \times 10^{-6} \mathrm{C}\right.$ and $\left.1.5 \times 10^{-6} \mathrm{C}\right)$
13. In the network shown in the figure, the potential difference (in Volt) across points A and B is
(A) 0
(B) 2
(C) 3
(D) 8

14. A long cylindrical shell carries positive surface charge density σ in the upper half and negative surface charge density $-\sigma$ in the lower half. The electric field lines around the cylinder will look like figure given in: (figures are schematic and not drawn to scale)
(A)

(B)

(C)

(D)

Space for rough work

PART - A: (Paragraph Type)

This section contains 2 paragraphs. Based upon the paragraphs 2 multiple choice questions have to be answered. Each of these questions has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

Paragraph for Question Nos. 15 and 16

In the circuit shown in fig. E, F, G and H are cells of emf 2, 1, 3 and 1 Volts respectively and their internal resistance are 2,1,3 and 1Ω respectively. Calculate
15. The potential difference between B and D and
(A) $\frac{2}{13} \mathrm{~V}$
(B) $\frac{4}{13} \mathrm{~V}$
(C) $\frac{6}{13} \mathrm{~V}$
(D) $\frac{8}{13} \mathrm{~V}$

16. The potential difference across the terminals of the cell G .
(A) $\frac{19}{13} \mathrm{~V}$
(B) $\frac{17}{13} \mathrm{~V}$
(C) $\frac{21}{13} \mathrm{~V}$
(D) $\frac{23}{13} \mathrm{~V}$

Paragraph for Questions 17 and 18

A uniform rod of mass 300 g and length 50 cm rotates at a uniform angular speed of $2 \mathrm{rad} / \mathrm{s}$ about an axis perpendicular to the rod through an end. Calculate
17. The angular momentum of the rod about the axis of rotation,
(A) $0.05 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
(B) $0.15 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
(C) $1.05 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
(D) $0.25 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
18. The speed of the centre of the rod and
(A) $25 \mathrm{~cm} / \mathrm{s}$
(B) $50 \mathrm{~cm} / \mathrm{s}$
(C) $75 \mathrm{~cm} / \mathrm{s}$
(D) $100 \mathrm{~cm} / \mathrm{s}$

SECTION - II: CHEMISTRY

PART - A (More than one type)

This section contains 7 multiple choice type questions. Each question has four choices (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct.

1 Which of the following ethers are cleaved by hot conc. HI?
(A)

(B)

(C)

(D)

2. Grignard reagents gives alkanes with
(A) phenol
(B) ether
(C) alcohol
(D) water
3. Which one of the following substance is/are aromatic?
(A)

(B)

(C)

(D)

4. $\triangle-\mathrm{CH}_{2} \mathrm{Cl} \xrightarrow[\Delta]{\mathrm{HOH}}$ Products. Then the possible products are
(A)

(B)

(C) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(D)

5. Colmanite $+\mathrm{A} \longrightarrow \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}+\mathrm{B} \longrightarrow \mathrm{H}_{3} \mathrm{BO}_{3}$
A and B are respectively.
(A) NaOH and $\mathrm{H}_{2} \mathrm{SO}_{4}$
(B) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and HCl (dil.)
(C) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3}
(D) NaOH and NaHCO_{3}
6. The polar molecule(s) among the following is/are
(A) 2, 2-Dimethylpropane
(B) trans-2-pentene
(C) cis-3-Hexene
(D) 2, 2, 3, 3-tetramethylbutane
7. Which of the following compounds is/are optically inactive?
(A)

(B)

(C)

(D)

PART - A: (Single Correct Answer Type)

This section contains 07 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.
8.

(A) inadequate ring size
(B) two bromines are in equatorial positions
(C) two bromines are in axial positions
(D) steric hindrance of t-butyl group towards attacking I^{-}ion

Space for rough work

9. Brominaiton of alkenes is used to distinguish alkenes from
(A) alkynes
(B) alkanes
(C) both (A) and (B)
(D) none of these
10.

(A)

(B)

(C)

(D)

11. Which among the following carbocations is least stable?
(A)

(B)

(C)

(D)

12. $\quad \mathrm{C}_{6} \mathrm{H}_{6} \xrightarrow{\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}} A \xrightarrow{\mathrm{ICl}} B$

The product B is
(A)

(B)

Space for rough work

13. Find the correct statement:
(A) 2, 4-pentanedione exists more as enol content in hexane than in water
(B) 2,4-pentanedione exists more as enol content in water than in hexane
(C) 2,4-pentanedione is equally stable in water and hexane in keto form
(D) 2,4-pentanediene exists mainly as keto form in water than in hexane
14. The reaction of 4-bromobenzyl chloride with NaCN in ethanol leads to
(A) 4-Bromobenzyl cyanide
(B) 4-Cyanobenzyl chloride
(C) 4-Cyanobenzyl cyanide
(D) 4-Bromo-2-cyanobenzyl chloride

PART - A: (Paragraph Type)

This section contains 2 paragraphs. Based upon the paragraphs 2 multiple choice questions have to be answered. Each of these questions has 4 choices $(A),(B),(C)$ and (D) out of which ONLY ONE is correct.

Paragraph for Questions 15 and 16

Cyclobutyl bromide when refluxed with magnesium in dry ether formed a compound (A) which on treatment with ethanal followed by acidification with dil. HCl gave another compound (B). Compound (B) has refluxed with an equivalent amount of HBr to form compound C .
15. Type of reaction involved in the conversion of compound (A) to (B) should be
(A) Nucleophilic substitution
(B) Nucleophilic addition
(C) Electrophilic addition
(D) Electrophilic substitution
16. What will be the structure of the compound B ?
(A)

(B)

(C)

(D)

Space for rough work

Paragraph for Question Nos. 17 and 18

Aromatic compounds are richer in carbon content then aliphatic ones. The benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ contains about 92% of carbon, but cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right) 86 \%$ of carbon content, the reason is aromatic compounds are unsaturated and are stable due to their cyclic, conjugated structures. Aromatic compounds follows Huckel's rule of aromaticity. Aromaticity is due to extensive delocalisation of πe^{-}in a planar ring system.
17. An aromatic compound contains
(A) $4 n+2 \pi$ electrons
(B) must be planar
(C) cyclic conjugated system
(D) All of the above
18. Which of the following compound is not aromatic?

(I)
(A) 1
(C) both I and II

(III)

(B) II
(D) both III and IV

SECTION - III : MATHEMATICS

PART - A: (Multi Correct Answer Type)

This section contains 07 multiple choice questions. Each question has four choices $(A),(B),(C)$ and (D) out of which ONE OR MORE may be correct.

1. If the tangents to the parabola $y^{2}=4 a x$ at $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ cut at $\left(x_{3}, y_{3}\right)$, then
(A) x_{1}, x_{3}, x_{2} are in A.P.
(B) x_{1}, x_{3}, x_{2} are in G.P.
(C) y_{1}, y_{3}, y_{2} are in A.P.
(D) $\mathrm{y}_{1}, \mathrm{y}_{3}, \mathrm{y}_{2}$ are in G.P.
2. The equation of ellipse referred to the axes as the x, y axes respectively which passes through the point $(-3,1)$ and has the eccentricity $\sqrt{2 / 3}$ is/are
(A) $\frac{x^{2}}{12}+\frac{y^{2}}{4}=1$
(B) $(x+2)^{2}+3(y+1)^{2}=4 x+6 y+19$
(C) $\frac{x^{2}}{4}+\frac{y^{2}}{12}=1$
(D) none of these
3. Let e be the eccentricity of a hyperbola and $f(e)$ be the eccentricity of its conjugate hyperbola, then $\int_{1}^{3} \underbrace{f f f \cdots f(e)}_{n \text { times }}$ de is equal to
(A) 4 if n is even
(B) 4 if n is odd
(C) 2 if n is even
(D) $2 \sqrt{2}$ if n is odd
4. Let $g(x)$ be a function defined on $[-1,1]$. If the area of the equilateral triangle with two of its vertices at $(0,0)$ and $[x, g(x)]$ is $\sqrt{3} / 4$, then function $g(x)$ is
(A) $g(x)= \pm \sqrt{1-x^{2}}$
(B) $g(x)=\sqrt{1-x^{2}}$
(C) $g(x)=-\sqrt{1-x^{2}}$
(D) $g(x)=\sqrt{1+x^{2}}$

Space for rough work

5. The normal at a general point (a, b) on a curve makes an angle θ with x-axis which satisfies $b\left(-a^{2} \tan \theta-\cot \theta\right)=a\left(b^{2}+1\right)$. The equation of curve can be
(A) $y=e^{x^{2} / 2}+c$
(B) $\log \left(k y^{2}\right)=x^{2}$
(C) $y=k e^{x^{2} / 2}$
(D) $x^{2}-y^{2}=k$
6. $\quad P$ is a point on the parabola $y^{2}=4 x$ and Q is a point on the line $2 x+y+4=0$. If the line $x-y+1=0$ is the perpendicular bisector of $P Q$, then the coordinates of P can be
(A) $(1,-2)$
(B) $(4,4)$
(C) $(9,-6)$
(D) $(16,8)$
7. Equation of a tangents to the circle $x^{2}+y^{2}=25$ passing through $(-2,11)$ are
(A) $4 x+3 y=25$
(B) $3 x+4 y=38$
(C) $24 x-7 y+125=0$
(D) $7 x+24 y=230$

PART - A: (Single Correct Answer Type)

This section contains 07 multiple choice questions. Each question has four choices $(A),(B),(C)$ and (D) out of which ONLY ONE is correct.
8. The angle between the tangents drawn from the origin to the parabola $y^{2}=4 a(x-a)$ is
(A) 90°
(B) 30°
(C) $\tan ^{-1} \frac{1}{2}$
(D) 45°
9. The tangent and normal to the ellipse $x^{2}+4 y^{2}=4$ at a point $P(\theta)$ on it meet the major axes in Q and R respectively. If $Q R=2$, the eccentric angle θ of P is
(A) $\sin \theta=2 / 3$
(B) $\tan \theta=1$
(C) $\cos \theta=2 / 3$
(D) none of these
10. If e_{1}, e_{2} be respectively the eccentricities of ellipse $9 x^{2}+4 y^{2}=36$ and hyperbola $9 x^{2}-4 y^{2}=36$, then
(A) $e_{1}^{2}+e_{2}^{2}>3$
(B) $\mathrm{e}_{1}^{2}+\mathrm{e}_{2}^{2}=2$
(C) $\mathrm{e}_{1}^{2}+\mathrm{e}_{2}^{2}>4$
(D) none of these
11. The area bounded by the curve $|x|=\cos ^{-1} y$ and the line $|x|=1$ and the x-axis is
(A) $\cos 1$
(B) $\sin 1$
(C) $2 \cos 1$
(D) $2 \sin 1$
12. Solution of $\frac{d y}{d x}+2 x y=y$ is
(A) $y=c e^{x-x^{2}}$
(B) $y=c e^{x^{2}}-x$
(C) $y=c e^{x}$
(D) $y=c e^{-x^{2}}$
13. Consider the line $L_{1}: 3 x-4 y+1=0$ and $L_{2}: 5 x-12 y-1=0$. Image of $A\left(2, \frac{3}{2}\right)$ under L_{1} is B and image of B under L_{2} is C. Point B is
(A) $\left(\frac{44}{25}, \frac{91}{50}\right)$
(B) $\left(\frac{44}{25}, \frac{-91}{50}\right)$
(C) $\left(\frac{1}{10}, \frac{-2}{5}\right)$
(D) None of these
14. Three coins of equal radius r touch each other externally, then the radius of circle which touches all the 3 coins
(A) $2 r$
(B) $r+\frac{2 r}{\sqrt{3}}$
(C) $r-\frac{2 r}{\sqrt{3}}$
(D) $2 r-\frac{r}{\sqrt{3}}$

PART - A: (Paragraph Type)

This section contains 2 paragraphs. Based upon the paragraphs 2 multiple choice questions have to be answered. Each of these questions has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

Paragraph for Question Nos. 15 and 16

A circle passing through the vertices of $\triangle A B C$ is known as circumcircle of $\triangle A B C$
15. Circumcircle of the $\triangle A B C$ whose sides are $x=0, y=0$ and $x+y=4$
(A) $x^{2}+y^{2}-4 x-4 y=0$
(B) $x^{2}+y^{2}+4 x+4 y=0$
(C) $x^{2}+y^{2}+4 x-4 y=0$
(D) none of these
16. A circle passing through the intersection of lines $x+y=2, x y-2 x-2 y+4=0$
(A) $x^{2}+y^{2}+2 x+2 y=0$
(B) $x^{2}+y^{2}-2 x-2 y=0$
(C) $x^{2}+y^{2}+2 x-2 y=0$
(D) none of these

Paragraph for Question Nos. 17 to 18

For certain curves $y=f(x)$ satisfying $\frac{d^{2} y}{d x^{2}}=6 x-4, f(x)$ has local minimum value 5 when $x=1$
17. Number of critical point for $y=f(x)$ for $x \in[0,2]$
(A) 0
(B) 1
(C) 2
(D) 3
18. Global minimum value of $y=f(x)$ for $x \in[0,2]$ is
(A) 5
(B) 7
(C) 8
(D) 9

Space for rough work

FIITJ EE INTERNAL TEST
 PHYSICS, CHEMISTRY \& MATHEMATICS

CPT-1
PHASE-II
CODE: 100881.2
PAPER-2

ANSWERS

PHYSICS (SECTION-I)

1.	$\mathbf{A}, \mathbf{B}, \mathbf{C}$	2.	\mathbf{A}, \mathbf{C}	3.	\mathbf{B}, \mathbf{C}	4.	\mathbf{A}, \mathbf{B}
5.	$\mathbf{A}, \mathbf{B}, \mathbf{D}$	6.	\mathbf{A}, \mathbf{B}	7.	$\mathbf{A}, \mathbf{B}, \mathbf{D}$	8.	D
9.	\mathbf{B}	10.	\mathbf{A}	11.	\mathbf{A}	12.	\mathbf{B}
13.	\mathbf{A}	14.	\mathbf{D}	15.	\mathbf{A}	16.	C
17.	\mathbf{A}	18.	\mathbf{B}				

CHEMISTRY (SECTION-II)

1.	A, B, C
5.	B
9.	B
13.	A
17.	D

2.

A, C, D
3.

A, C, D
4. A, B, C, D
6. B, C
10. C
14. \mathbf{A}
7. A, B, C
8. B
11. \mathbf{A}
12. \mathbf{C}
15. B
16. A

MATHEMATICS (SECTION-III)

1.	B, C	2.	A, B
5.	B, C, D	6.	A, C
9.	C	10.	A
13.	A	14.	B
17.	\mathbf{C}	18.	A

